Analysis of Correlation Matrices Using Covariance Structure Models
نویسنده
چکیده
It is often assumed that covariance structure models can be arbitrarily applied to sample correlation matrices as readily as to sample covariance matrices. Although this is true in many cases and leads to an analysis that is mostly correct, it is not permissible for all structures. This article reviews three interrelated problems associated with the analysis of structural models using a matrix of sample correlations. Depending upon the model, applying a covariance structure to a matrix of correlations may (a) modify the model being studied, (b) produce incorrect values of the omnibus test statistic, or (c) yield incorrect standard errors. An important class of models are those that are scale invariant (Browne, 1982), for then Errors a and b cannot occur when a correlation matrix is analyzed. A number of examples based on restricted factor analysis are presented to illustrate the concepts described in the article.
منابع مشابه
Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملRank-based Procedures for Structural Hypotheses on Covariance Matrices
A wide class of structural models on multivariate normal covariance matrices can be expressed using symmetries. For example, a multivariate normal vector has the intraclass correlation structure (where all variances are equal, and all covariances are equal) if the covariance matrix is invariant under permutation of the components, and the components are independent if the covariance matrix in i...
متن کاملHierarchical Correlation Compensation For Hidden Markov Models
In this paper, we present a Hierarchical Correlation Compensation (HCC) scheme to reliably estimate full covariance matrices for Gaussian components in CDHMMs for speech recognition. First, we build a hierarchical tree in the covariance space, where each leaf node represents a Gaussian component in the CDHMM set. For all lower-level nodes in the tree, we estimate a diagonal covariance matrix as...
متن کاملLarge Sample Covariance Matrices without Independence Structures in Columns
The limiting spectral distribution of large sample covariance matrices is derived under dependence conditions. As applications, we obtain the limiting spectral distributions of Spearman’s rank correlation matrices, sample correlation matrices, sample covariance matrices from finite populations, and sample covariance matrices from causal AR(1) models.
متن کاملFlexible marginalized models for bivariate longitudinal ordinal data.
Random effects models are commonly used to analyze longitudinal categorical data. Marginalized random effects models are a class of models that permit direct estimation of marginal mean parameters and characterize serial correlation for longitudinal categorical data via random effects (Heagerty, 1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics 55, 688-...
متن کامل